Algorithms for Rational Real Algebraic Curves
نویسندگان
چکیده
In this paper, we study fundamental properties of real curves, especially of rational real curves, and we derive several algorithms to decide the reality and rationality of curves in the complex plane. Furthermore, if the curve is real and rational, we determine a real parametrization. More precisely, we present a reality test algorithm for plane curves, and three different types of real parametrization algorithms that we call: direct parametrization algorithms (they compute a rational real parametrization, if it exists), algebraically optimal parametrization algorithms (they compute a rational real parametrization over the smallest possible real field extension, if the curve is rational and real), and hybrid parametrization algorithms (they combine parametrization and reparametrization techniques to derive algebraically optimal rational real parametrizations).
منابع مشابه
Real Parametrization of Algebraic Curves
There are various algorithms known for deciding the parametrizability (rationality) of a plane algebraic curve, and if the curve is rational, actually computing a parametrization. Optimality criteria such as low degrees in the parametrization or low degree field extensions are met by some parametrization algorithms. In this paper we investigate real curves. Given a parametrizable plane curve ov...
متن کاملPiecewise Approximations of Real Algebraic Surfaces
We use a combination of both symbolic and numerical techniques to construct several degree bounded G 0 and G 1 continuous, piecewise approximations of real algebraic surfaces. These approximations are based upon an adaptive triangulation (a G 0 planar approximation) of the real components of the algebraic surface, and includes both singular points and singular curves on the surface. The approxi...
متن کاملSpinor states of real rational curves in real algebraic convex 3-manifolds and enumerative invariants
Let X be a real algebraic convex 3-manifold whose real part is equipped with a Pin− structure. We show that every irreducible real rational curve with non-empty real part has a canonical spinor state belonging to {±1}. The main result is then that the algebraic count of the number of real irreducible rational curves in a given numerical equivalence class passing through the appropriate number o...
متن کاملComputations with Algebraic Curves
We present a variety of computational techniques dealing with algebraic curves both in the plane and in space. Our main results are polynomial time algorithms (1) to compute the genus of plane algebraic curves, (2) to compute the rational parametric equations for implicitly defined rational plane algebraic curves of arbitrary degree, (3) to compute birational mappings between points on irreduci...
متن کاملAutomatic parameterization of rational curves and surfaces III: Algebraic plane curves
We consider algorithms to compute the genus and rational parametric equations, for implicitly defined irreducible rational plane algebraic curves of arbitrary degree. Rational panuneterizations exist for all irreducible algebraic curves of genus O. The genus is compuled by a complete analysis of the singularities of plane algebraic curves, using affine quadratic transformations. The rational pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fundam. Inform.
دوره 39 شماره
صفحات -
تاریخ انتشار 1999